Bioactivation of lamotrigine in vivo in rat and in vitro in human liver microsomes, hepatocytes, and epidermal keratinocytes: characterization of thioether conjugates by liquid chromatography/mass spectrometry and high field nuclear magnetic resonance spectroscopy.

2010 
Previous studies suggested that lamotrigene (LTG) underwent bioactivation to a reactive aryl epoxide intermediate in rats. Nevertheless, definitive structures of these thioether conjugates, which are often needed to substantiate the mechanism of bioactivation and identity of reactive intermediate(s), were not fully established. In the present study, GSH, cysteinylglycine, and N-acetyl cysteine conjugates of LTG were isolated from bile of rats orally dosed with LTG (100 mg/kg), and their structures were fully elucidated by LC/MS and NMR. The definitive structural characterization of these metabolites provided evidence for the existence of a reactive aryl epoxide that was trapped as a GSH adduct. In vitro studies using various hepatic cellular and subcellular fractions obtained from human and rat were performed to demonstrate that LTG underwent bioactivation to form a GSH conjugate that was identical to the one initially characterized from in vivo studies. Human P450 2A6 and rat P450 2C11 appeared to be the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    23
    Citations
    NaN
    KQI
    []