GaN-on-Diamond HEMTs with 11W/mm Output Power at 10GHz

2016 
A new device-first low-temperature bonded gallium nitride (GaN)-on-diamond high-electronic mobility transistor (HEMT) technology with state-of-the-art, radio frequency (RF) power performance is described. In this process, the devices were first fabricated on a GaN-on-silicon carbide (SiC) epitaxial wafer and were subsequently separated from the SiC and bonded onto a high-thermal-conductivity diamond substrate. Thermal measurements showed that the GaN-on-diamond devices maintained equivalent or lower junction temperatures than their GaN-on-SiC counterparts while delivering more than three-times higher RF power within the same active area. Such results demonstrate that the GaN device transfer process is capable of preserving intrinsic transistor electrical performance while taking advantage of the excellent thermal properties of diamond substrates. Preliminary step-stress and room-temperature, steady-state life testing shows that the low-temperature bonded GaN-on-diamond device has no inherently reliability limiting factor. GaN-on-diamond is ideally suited to wideband electronic warfare (EW) power amplifiers as they are the most thermally challenging due to continuous wave (CW) operation and the reduced power-added efficiency obtained with ultra-wide bandwidth circuit implementations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    13
    Citations
    NaN
    KQI
    []