Physiologically based calculation of steady-state evoked potentials and cortical wave velocities

2008 
Steady-state evoked potentials (SSEPs) elicited by sinusoidal stimuli are predicted from a physiologically-based model, including bielectrode and volume conduction effects. Comparison with visual SSEPs yields constraints on phase and latency of the retinothalamic transfer function that are consistent with experiment. Predictions of phase velocities measured as SSEPs cross the cortex are consistent with low values measured for slow waves in sleep, while resonant behavior induced by corticothalamic loops, especially near the alpha peak, contributes to wide scatter in waking-state phase velocity measurements comparable to effects from volume conduction. The common use of bielectrode derivations to compensate for volume conduction effects is examined and shown to be incomplete, tending to lead to underestimates of phase velocity, especially at low frequencies and near the alpha peak, due to incorrect elimination of true long-wavelength contributions to the SSEP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    14
    Citations
    NaN
    KQI
    []