Comprehensive study of the p-type conductivity formation in radio frequency magnetron sputtered arsenic-doped ZnO film

2011 
Arsenic doped ZnO and ZnMgO films were deposited on SiO2 using radio frequency magnetron sputtering and ZnO–Zn3As2 and ZnO–Zn3As2–MgO targets, respectively. It was found that thermal activation is required to activate the formation of p-type conductivity. Hall measurements showed that p-type films with a hole concentration of ∼1017 cm−3 and mobility of ∼8 cm2 V−1 s−1 were obtained at substrate temperatures of 400–500 °C. The shallow acceptor formation mechanism was investigated using x-ray photoelectron spectroscopy, positron annihilation, low temperature photoluminescence, and nuclear reaction analysis. The authors suggest that the thermal annealing activates the formation of the AsZn-2VZn shallow acceptor complex and removes the compensating hydrogen center.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []