Distributed Model Predictive Control for Linear Systems with Adaptive Terminal Sets

2019 
We propose a distributed model predictive control scheme for linear time-invariant constrained systems that admit a separable structure. To exploit the merits of distributed computation algorithms, the terminal cost and invariant terminal set of the optimal control problem need to respect the coupling structure of the system. Existing methods to address this issue typically separate the synthesis of terminal controllers and costs from the one of terminal sets, and do not explicitly consider the effect of the current and predicted system states on this synthesis process. These limitations can adversely affect performance due to small or even empty terminal sets. Here, we present a unified framework to encapsulate the synthesis of both the stabilizing terminal controller and invariant terminal set into the same optimization problem. Conditions for Lyapunov stability and invariance are imposed in the synthesis problem in a way that allows the terminal cost and invariant terminal set to admit the desired distributed structure. We illustrate the effectiveness of the proposed method on several numerical examples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    14
    Citations
    NaN
    KQI
    []