Domain-invariant Similarity Activation Map Metric Learning for Retrieval-based Long-term Visual Localization

2021 
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions, e.g., illumination changes, retrieval-based visual localization is severely affected and becomes a challenging problem. In this work, a general architecture is first formulated probabilistically to extract domain-invariant features through multi-domain image translation. Then, a novel gradient-weighted similarity activation mapping loss ( Grad-SAM ) is incorporated for finer localization with high accuracy. We also propose a new adaptive triplet loss to boost the metric learning of the embedding in a self-supervised manner. The final coarse-to-fine image retrieval pipeline is implemented as the sequential combination of models with and without Grad-SAM loss. Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMU-Seasons dataset. The strong generalization ability of our approach is verified with the RobotCar dataset using models pre-trained on urban parts of the CMU-Seasons dataset. Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision, especially under challenging environments with illumination variance, vegetation, and night-time images. Moreover, real-site experiments have been conducted to validate the efficiency and effectiveness of the coarse-to-fine strategy for localization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    2
    Citations
    NaN
    KQI
    []