Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor.

2020 
NFE2L2/NRF2 is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, and conversely NRF2 activity is diminished with age and in neurodegenerative as well as metabolic disorders. Though NRF2 activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here we used a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the understudied protein kinase Brain Specific Kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives AMPK signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppressed ribosome-RNA complexes, global protein synthesis, and NRF2 protein levels. Collectively our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis may prove useful for therapeutically targeting NRF2 in human disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    9
    Citations
    NaN
    KQI
    []