Hotspots, mantle convection and plate tectonics: A synthetic calculation

1994 
A model is developed that unifies vigorous hotspots with global-scale mantle convection and plate tectonics. The convection dynamics are assumed to generate flow patterns that emerge as closely packed polygonal cells in approaching the asthenosphere, and whose geometry is completely determined by a defining set of vigorous hotspots. Overlying viscously coupled rigid plates are driven with unique velocities (Euler vectors) at which the area integral of the shear forces is zero; these velocities are dynamically stable. The computed plate velocities, resulting from convection based on 15 hotspots, are compared with the velocities of plate motion models AM1-2 (Minster andJordan, 1978) and HS-NUVEL1 (Gripp andGordon, 1990), which combine transform fault geometries, magnetic anomalies and seismic data. The comparison shows a striking agreement for a majority of the plates. Geophysical implications of this numerical exercise are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []