Controlling collective spontaneous emission with plasmonic waveguides.

2016 
We demonstrate a plasmonic route to control the collective spontaneous emission of two-level quantum emitters. Superradiance and subradiance effects are observed over distances comparable to the operating wavelength inside plasmonic nanochannels. These plasmonic waveguides can provide an effective epsilon-near-zero operation in their cut-off frequency and Fabry-Perot resonances at higher frequencies. The related plasmonic resonant modes are found to efficiently enhance the constructive (superradiance) or destructive (subradiance) interference between different quantum emitters located inside the waveguides. By increasing the number of emitters located in the elongated plasmonic channel, the superradiance effect is enhanced at the epsilon-near-zero operation, leading to a strong coherent increase in the collective spontaneous emission rate. In addition, the separation distance between neighboring emitters and their emission wavelengths can be changed to dynamically control the collective emission properties of the plasmonic system. It is envisioned that the dynamic modification between quantum superradiant and subradiant modes will find applications in quantum entanglement of qubits, low-threshold nanolasers and efficient sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    27
    Citations
    NaN
    KQI
    []