Hyperbaric oxygen inhibits the HMGB1/RAGE signaling pathway by upregulating Mir-107 expression in human osteoarthritic chondrocytes

2019 
Summary Objective MicroRNA (miRNA)107 expression is downregulated but high mobility group box 1 (HMGB-1), Toll-like receptors (TLRs), and receptor for advanced glycation end products (RAGE) are upregulated in osteoarthritic (OA) cartilage. We investigated mir-107/HMGB-1 signaling in OA after hyperbaric oxygen (HBO) treatment. Design MiR-107 mimic was transfected and the HMGB-1 was analyzed in OA chondrocytes. MiRNA targets were identified using bioinformatics and a luciferase reporter assay. After HBO treatment, the mRNA or protein levels of HMGB-1, RAGE, TLR2, TLR4, and inducible nitric oxide synthase (iNOS) and phosphorylation of mitogen-activated protein kinase (MAPK) were evaluated. The secreted HMGB-1 and matrix metalloproteases (MMPs) levels were quantified. Finally, we detected the HMGB-1 and iNOS expression in rabbit cartilage defects. Results Overexpression of miR-107 suppressed HMGB-1 expression in OA chondrocytes. The 3'UTR of HMGB-1 mRNA contained a ‘seed-matched-sequence' for miR-107. MiR-107 was induced by HBO and a marked suppression of HMGB-1 was observed simultaneously in OA chondrocytes. Knockdown of miR-107 upregulated HMGB-1 expression in hyperoxic cells. HBO downregulated the mRNA and protein expression of HMGB-1, RAGE, TLR2, TLR4, and iNOS, and the secretion of HMGB-1. HBO decreased the nuclear translocation of nuclear factor (NF)-κB, downregulated the phosphorylation of MAPK, and significantly decreased the secretion of MMPs. Morphological and immunohistochemical observation demonstrated that HBO markedly enhanced cartilage repair and the area stained positive for HMGB-1 and iNOS tended to be lower in the HBO group. Conclusions HBO inhibits HMGB-1/RAGE signaling related pathways by upregulating miR-107 expression in human OA chondrocytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    10
    Citations
    NaN
    KQI
    []