Small-world networks of spontaneous Ca2+ activity

2013 
Synchronized network activity among groups of interconnected cells is essential for diverse functions in the brain. However, most studies have been made on cellular networks in the mature brain when chemical synapses have been formed. Much less is known about the situation earlier in development. When studying neural progenitors derived from embryonic stem cells and neural progenitors from mice embryos, we found networks of gap junction coupled cells with vivid spontaneous non-random calcium (Ca2+) activity driven by electrical depolarization that stimulated cell growth. Network activity was revealed by single-cell live Ca2+ imaging and further analyzed for correlations and network topology. The analysis revealed the networks to have small-world characteristics with scale-free properties. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    14
    Citations
    NaN
    KQI
    []