Hamiltonian regularisation of the unidimensional barotropic Euler equations

2020 
Recently, a Hamiltonian regularised shallow water (Saint-Venant) system has been introduced by Clamond and Dutykh. This system is Galilean invariant, linearly non-dispersive and conserves formally an $H^1$-like energy. In this paper, we generalise this regularisation for the barotropic Euler system preserving the same properties. We prove the local (in time) well-posedness of the regularised barotropic Euler system and a periodic generalised two-component Hunter-Saxton system. We also show for both systems that if singularities appear in finite time, they are necessary in the first derivatives.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []