Shift the surface plasmon polariton interference pattern in symmetrical arc slits structure and its application to Rayleigh metallic particle trapping

2020 
In symmetric nano/micro metal slit structures, interference patterns are produced by counter-propagating surface plasmon polaritons (SPPs) in the the center of structures, which can be employed to improve the resolution of microscopy and surface etching and to realize particle trapping. This paper focuses on the shift of the SPP interference patterns in the symmetric arc slit structures. The excitation models with one incident beam and two incident beams are established and analyzed respectively, and methods to shift the SPP interference patterns via adjusting the tilt angle and initial phase of the excitation beams are compared. The FDTD simulation results show that these methods can precisely shift the SPP interference patterns in the symmetrical arc slits. Compared to the linear slits, the SPP waves arising from arc slits are more strongly focused, resulting in a stronger gradient force. The characteristics of stronger focus and dynamic shifting of the focal spot give the symmetric arc slit structure unique advantages in the capture and transfer of the Rayleigh metallic particle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []