Do We Need New Gravity Field Recovery Techniques for the New Gravity Field Satellites

2008 
The classical approach of satellite geodesy consists in deriving the spherical harmonic coefficients representing the gravitational potential from an analysis of accumulated orbit perturbations of artificial satellites with different altitudes and orbit inclinations. This so-called differential orbit improvement technique required the analysis of rather long arcs of days to weeks; it was the adequate technique for satellite arcs poorly covered with observations, mainly precise laser ranging to satellites. The situation changed dramatically with the new generation of dedicated gravity satellites such as CHAMP, GRACE and – in a couple of months – GOCE. These satellites are equipped with very precise sensors to measure the gravity field and the orbits. The sensors provide a very dense coverage with observations independent from Earth based observation stations. The measurement concepts can be characterized by an in-situ measurement principle of the gravitational field of the Earth. In the last years various recovery techniques have been developed which exploit these specific characteristics of the in-situ observation strategy. This paper gives an overview of the various gravity field recovery principles and tries to systemize these new techniques. Alternative in-situ modelling strategies are presented based on the translational and rotational integrals of motion. These alternative techniques are tailored to the in-situ measurement characteristics of the innovative type of satellite missions. They complement the scheme of in-situ gravity field analysis techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    9
    Citations
    NaN
    KQI
    []