Negative effects of acute cadmium on stress defense, immunity, and metal homeostasis in liver of zebrafish: The protective role of environmental zinc dpre-exposure

2019 
Abstract In the study, zebrafish were exposed to 0 and 200 μg/L Zn for 8 weeks, and then both groups were transferred to water including 0, 100, and 200 μg/L Cd for 4 days, respectively. Acute Cd exposure caused negative effects on stress defense, immune, and metal transport systems by increasing lipid peroxidation, iNOS activity and mRNA levels of il-6 and inos , and decreasing Cu/Zn-SOD and HSP70 levels, and mRNA levels of sod1 , cat , hsp70 , p65 , mtf-1 , znt5 , zip7 , atp7a , and atp7b . Lipid peroxidation was significantly reduced by Zn pre-exposure under Cd exposure, which may be explained by the enhanced stress defense capacity and the weaken inflammatory response. Firstly, Zn pre-exposure increased MTs and HSP70 levels and CAT activity in Cd-free water, which may facilitate fish quick response to Cd. Secondly, Zn pre-exposure reduced Cd accumulation at 100 and 200 μg/L Cd, down-regulated il-6 and il-1β at 100 μg/L Cd and p65  at 200 μg/L Cd, and increased Cu/Zn-SOD and CAT activities at 200 μg/L Cd. Thirdly, Zn pre-exposure alone up-regulated transcription factors ( hsf1 , hsf2 , and mtf-1 , and nrf2 ) and their target genes ( sod1 , cat, hsp70 , and mt2 ) under Cd exposure in a dose-dependent manner. It should be noted that Zn pre-exposure down-regulated several metal transport genes dramatically at 0 and 100 μg/L Cd, which may be an important mechanism for reducing Cd import into livers. Overall, long-term and environmental Zn pre-exposure mitigated Cd toxicity by the enhanced stress defense capacity and the down-regulated metal transport and inflammatory responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    23
    Citations
    NaN
    KQI
    []