Inter-Relationship between Coating Micro/Nanostructure and the Tribological Performance of Zr–C Gradient Coatings

2020 
The research presented in this article concerns Zr–C gradient coatings that were deposited on HS6-5-2 steel by reactive magnetron sputtering from the Zr target in appropriately programmed C2H2 mass flow rate, resulting in various profiles of atomic carbon concentrations in the coating and consequently in spatial change of the properties (H, E,...) and behavior (H/E, H3/E2, We). In particular, the characteristic changes in hardness and Young’s modulus in the Zr–C coatings represented approximately by the bell curve, which has a maximum at the content of about 50 at.% C, were an inspiration to study the behavior of gradient coatings with carbon content in the range of 0–50 and 50–85 at.% with the same hardness change profile. The obtained results indicate that, firstly, the gradient of spatial changes in the coating composition increases their resistance to cohesive damage in comparison to non-gradient coatings, and, secondly, the results show that high hardness is a desired property but not sufficient to ensure adequate coating performance. Independently, an appropriate nano/microstructural structure is necessary, which determines their tribological behavior. In particular, in the case of the tested Zr–C coatings, the obtained results indicate that gradient coatings with a carbon content in the range of 50–85 at.% have better properties, characterized by the critical force Lc2, wear, coefficient of friction, H/E and H3/E2 ratios.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    3
    Citations
    NaN
    KQI
    []