Optically transparent thin-film transistors based on 2D multilayer MoS2 and indium zinc oxide electrodes

2015 
We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μeff) of 1.4 cm2 V−1 s−1 was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μeff increased to 4.5 cm2 V−1 s−1, and the on-off current ratio (Ion/Ioff) increased to 104, which were attributed to the reduction of the contact resistance between MoS2 and IZO.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    17
    Citations
    NaN
    KQI
    []