Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism

2015 
Mathematical models of cometabolic biodegradation kinetics can improve our understanding of the relevant microbial reactions and allow us to design in situ or in-reactor applications of cometabolic bioremediation. A variety of models are available, but their ability to describe experimental data has not been systematically evaluated for a variety of operational/experimental conditions. Here five different models were considered: first-order; Michaelis–Menten; reductant; competition; and combined models. The models were assessed on their ability to fit data from simulated batch experiments covering a realistic range of experimental conditions. The simulated observations were generated by using the most complex model structure and parameters based on the literature, with added experimental error. Three criteria were used to evaluate model fit: ability to fit the simulated experimental data, identifiability of parameters using a colinearity analysis, and suitability of the model size and complexity using the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    19
    Citations
    NaN
    KQI
    []