The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection. The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection. AIC is founded on information theory. When a statistical model is used to represent the process that generated the data, the representation will almost never be exact; so some information will be lost by using the model to represent the process. AIC estimates the relative amount of information lost by a given model: the less information a model loses, the higher the quality of that model. In estimating the amount of information lost by a model, AIC deals with the trade-off between the goodness of fit of the model and the simplicity of the model. In other words, AIC deals with both the risk of overfitting and the risk of underfitting. The Akaike information criterion is named after the statistician Hirotugu Akaike, who formulated it. It now forms the basis of a paradigm for the foundations of statistics; as well, it is widely used for statistical inference. Suppose that we have a statistical model of some data. Let k be the number of estimated parameters in the model. Let L ^ {displaystyle {hat {L}}} be the maximum value of the likelihood function for the model. Then the AIC value of the model is the following. Given a set of candidate models for the data, the preferred model is the one with the minimum AIC value. Thus, AIC rewards goodness of fit (as assessed by the likelihood function), but it also includes a penalty that is an increasing function of the number of estimated parameters. The penalty discourages overfitting, because increasing the number of parameters in the model almost always improves the goodness of the fit. AIC is founded in information theory. Suppose that the data is generated by some unknown process f. We consider two candidate models to represent f: g1 and g2. If we knew f, then we could find the information lost from using g1 to represent f by calculating the Kullback–Leibler divergence, DKL(f ‖ g1); similarly, the information lost from using g2 to represent f could be found by calculating DKL(f ‖ g2). We would then, generally, choose the candidate model that minimized the information loss. We cannot choose with certainty, because we do not know f. Akaike (1974) showed, however, that we can estimate, via AIC, how much more (or less) information is lost by g1 than by g2. The estimate, though, is only valid asymptotically; if the number of data points is small, then some correction is often necessary (see AICc, below). Note that AIC tells nothing about the absolute quality of a model, only the quality relative to other models. Thus, if all the candidate models fit poorly, AIC will not give any warning of that. Hence, after selecting a model via AIC, it is usually good practice to validate the absolute quality of the model. Such validation commonly includes checks of the model's residuals (to determine whether the residuals seem like random) and tests of the model's predictions. For more on this topic, see statistical model validation.