Mammalian cold-inducible RNA-binding protein facilitates wound healing through activation of AMP-activated protein kinase.

2020 
Abstract The skin is usually maintained within a temperature range that induces cold-inducible RNA-binding protein (Cirp). To determine whether Cirp plays a role in barrier function of the skin, we analyzed the skin wound healing in cirp-knockout (KO) mice. They exhibited delayed wound healing compared with wild-type littermates in the absence as well as presence of skin contraction. Dermal fibroblasts and keratinocytes from cirp-KO mice migrated slower than those from wild-type mice. When expression of Cirp was downregulated in cultured cells, migration rate was decreased. Cirp bound liver-kinase-B1 (LKB1) in the nucleus and was suggested to enhance its translocation to the cytoplasm, resulting in enhanced phosphorylation of AMP-activated protein kinase (AMPK) and cell motility. Stimulation of AMPK ameliorated the delayed wound healing in cirp-KO mice. These findings suggest that Cirp facilitates skin wound healing by enhancing cell migration via AMPK, indicating roles for Cirp in linking skin temperature with metabolism and defense mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []