Systemic oscillator-driven and nutrient-responsive hormonal regulation of daily expression rhythms for gluconeogenic enzyme genes in the mouse liver

2019 
ABSTRACTGluconeogenesis is de novo glucose synthesis from substrates such as amino acids and is vital when glucose is lacking in the diurnal nutritional fluctuation. Accordingly, genes for hepatic gluconeogenic enzymes exhibit daily expression rhythms, whose detailed regulations under nutritional variations remain elusive. As a first step, we performed general systematic characterization of daily expression profiles of gluconeogenic enzyme genes for phosphoenolpyruvate carboxykinase (PEPCK), cytosolic form (Pck1), glucose-6-phosphatase (G6Pase), catalytic subunit (G6pc), and tyrosine aminotransferase (TAT) (Tat) in the mouse liver. On a standard diet fed ad libitum, mRNA levels of these genes showed robust daily rhythms with a peak or an elevation phase during the late sleep-fasting period in the diurnal feeding/fasting (wake/sleep) cycle. The rhythmicity was preserved in constant darkness, modulated with prolonged fasting, attenuated by Clock mutation, and entrained to varied photoperiods and time-restri...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    2
    Citations
    NaN
    KQI
    []