Alteration of poly(ADP‐ribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases

2003 
Abstract Poly(ADP-ribosyl)ation is an important post-translational modification which mostly affects nuclear proteins. The major roles of poly(ADP-ribose) synthesis are assigned to DNA damage signalling during base excision repair, apoptosis and excitotoxicity. The transient nature and modulation of poly(ADP-ribose) levels depend mainly on the activity of poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG), the key catabolic enzyme of poly(ADP-ribose). Given the fact that PARG substrate, poly(ADP-ribose), is found almost exclusively in the nucleus and that PARG is mainly localized in the cytoplasm, we wanted to have a closer look at PARG subcellular localization in order to better understand the mechanism by which PARG regulates intracellular poly(ADP-ribose) levels. We examined the subcellular distribution of PARG and of its two enzymatically active C-terminal apoptotic fragments both biochemically and by fluorescence microscopy. Green fluorescent protein (GFP) fusion proteins were constructed for PARG (GFP-PARG), its 74 kDa (GFP-74) and 85 kDa (GFP-85) apoptotic fragments and transiently expressed in COS-7 cells. Localization experiments reveal that all three fusion proteins localize predominantly to the cytoplasm and that a fraction also co-localizes with the Golgi marker FTCD. Moreover, leptomycin B, a drug that specifically inhibits nuclear export signal (NES)-dependent nuclear export, induces a redistribution of GFP-PARG from the cytoplasm to the nucleus and this nuclear accumulation is even more pronounced for the GFP-74 and GFP-85 apoptotic fragments. This observation confirms our hypothesis for the presence of important regions in the PARG sequence that would allow the protein to engage in CRM1–dependent nuclear export. Moreover, the altered nuclear import kinetics found for the apoptotic fragments highlights the importance of PARG N-terminal sequence in moduling PARG nucleocytoplasmic trafficking properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    43
    Citations
    NaN
    KQI
    []