Experimental and numerical investigations of aerodynamic behavior of a three-stage high-pressure turbine at different operation conditions

2012 
Using the Reynolds-averaged Navier–Stokes-based numerical methods to simulate the flow field, efficiency and performance of high-pressure turbine components of multi-stage steam turbines result in substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. These differences are integrally noticeable in terms of major discrepancies in aerodynamic losses, efficiency, and performance of the turbine. As a consequence, engine manufacturers are compelled to frequently calibrate their simulation package by performing a series of experiments before issuing efficiency and performance guaranty. The aim of this article is to investigate the cause of the aforementioned differences by utilizing a three-stage high-pressure research turbine with three-dimensional compound lean blades as the platform for experimental and numerical investigations. Experimental data were obtained using interstage aerodynamic measurements at three measurement stations, namely, dow...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []