Adaptive disinhibitory gating by VIP interneurons permits associative learning

2018 
Learning drives behavioral adaptations necessary for survival. While plasticity of excitatory projection neurons during associative learning is studied extensively, little is known about the contributions of local interneurons. Using fear conditioning as a model for associative learning, we find that behaviorally relevant, salient stimuli cause learning by tapping into a local microcircuit consisting of precisely connected subtypes of inhibitory interneurons. By employing calcium imaging and optogenetics, we demonstrate that vasoactive intestinal peptide (VIP)-expressing interneurons in the basolateral amygdala are activated by aversive events and provide an instructive disinhibitory signal for associative learning. Notably, VIP interneuron responses are plastic and shift from the instructive to the predictive cue upon memory formation. We describe a novel form of adaptive disinhibitory gating by VIP interneurons that allows to discriminate unexpected, important from irrelevant information, and might be a general dynamic circuit motif to trigger stimulus-specific learning, thereby ensuring appropriate behavioral adaptations to salient events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    8
    Citations
    NaN
    KQI
    []