language-icon Old Web
English
Sign In

Interneuron

An interneuron (also called internuncial neuron, relay neuron, association neuron, connector neuron, intermediate neuron or local circuit neuron) is a broad class of neurons found in the human body. Interneurons create neural circuits, enabling communication between sensory or motor neurons and the central nervous system (CNS). They have been found to function in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain. An interneuron (also called internuncial neuron, relay neuron, association neuron, connector neuron, intermediate neuron or local circuit neuron) is a broad class of neurons found in the human body. Interneurons create neural circuits, enabling communication between sensory or motor neurons and the central nervous system (CNS). They have been found to function in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain. Interneurons can be further broken down into two groups: local interneurons and relay interneurons. Local interneurons have short axons and form circuits with nearby neurons to analyze small pieces of information. Relay interneurons have long axons and connect circuits of neurons in one region of the brain with those in other regions. The interaction between interneurons allow the brain to perform complex functions such as learning, and decision-making. Unlike the peripheral nervous system (PNS), the central nervous system, including the brain, contains many interneurons. In the neocortex (making up about 80% of the human brain), approximately 20-30% of neurons are interneurons. Investigations into the molecular diversity of neurons is impeded by the inability to isolate cell populations born at different times for gene expression analysis. An effective means of identifying coetaneous interneurons is neuronal birthdating. This can be achieved using nucleoside analogs such as EdU. In 2008, a nomenclature for the features of GABAergic cortical interneurons was proposed, called Petilla terminology. Interneurons in the CNS are primarily inhibitory, and use the neurotransmitter GABA or glycine. However, excitatory interneurons using glutamate in the CNS also exist, as do interneurons releasing neuromodulators like acetylcholine. Interneurons main function is to provide a neural circuit, conducting flow of signals or information between a sensory neuron and or motor neuron.

[ "Inhibitory postsynaptic potential", "Central nervous system", "Interneuron migration", "Inhibitory interneuron", "Neoconocephalus ensiger", "Medial giant interneuron", "Commissural Interneurons" ]
Parent Topic
Child Topic
    No Parent Topic