Optimization of enzymatic extraction of ferulic acid from wheat bran, using response surface methodology, and characterization of the resulting fractions

2009 
BACKGROUND: The agro-industries generate thousands of tons of by-products, such as bran or pulps, each year. They are, at best, used for cattle feeding. Through biocracking, this biomass may constitute a renewable source for various molecules of interest for the industry. For instance, ferulic acid, a compound showing antioxidant ability, is found in abundance in cereal bran. Its release depends mainly on the breaking of its ester linkage to other constitutive elements of the cell wall, such as arabinoxylans. Response surface methodology was used to evaluate the effects of ferulic acid esterase (FAE) and xylanase activities, as well as incubation time and temperature, on ferulic acid extraction yield from wheat bran. Under optimized conditions, the composition of the hydrolysate and of residual bran were compared to native bran. RESULTS: Experiments carried out under the predicted optimal conditions (FAE amount, 27 U g−1; xylanase amount, 304 U g−1; incubation time, 2 h; and temperature, 65 °C) led to an extraction yield of 52.8%, agreeing with the expected value (51.0%). The crude ferulic acid fraction was purified with Amberlite XAD16, leading to a final concentration of 125 µg mL−1 of ferulic acid in ethanol. The antioxidant capacity of this purified fraction was evaluated by the DPPH· scavenging method: it exhibited better efficiency (EC50 = 10.6 µmol L−1 in ferulic acid) than the ferulic acid standard (EC50 = 13.7 µmol L−1). CONCLUSION: These results confirm the potential of wheat bran valorization in the field of natural antioxidant extraction, possibly viable in an industrial scheme. Copyright © 2009 Society of Chemical Industry
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    30
    Citations
    NaN
    KQI
    []