Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

2017 
Plasmonic sensor configurations utilizing localized plasmon resonances in silver nanostructures typically suffer from the rapid degradation of silver under ambient atmospheric conditions. In this work, we report on the fabrication and detailed characterization of ensembles of monocrystalline silver nanoparticles (NPs), which exhibit a long-term stability of optical properties under ambient conditions without any protective treatments. Ensembles with different densities (surface coverages) of size-selected NPs (mean diameters of 12.5 and 24 nm) on quartz substrates are fabricated using the cluster-beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    31
    Citations
    NaN
    KQI
    []