Facile fabrication of aluminum nanoparticle−film system for elevating the hot spots intensity

2020 
The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)−film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps. Interestingly, as the number of Al film layers increase, the plasmonic couplings generated between the Al NP and Al film increase as well. It is demonstrated that the confined gap plasmon modes stimulated in the nanoscale-thick alumina region between the adjacent Al films contribute significantly to elevating the plasmonic coupling intensity. The finite-difference time-domain (FDTD) method is used to carry out the simulations and verifies this result.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []