The upgrade of KSTAR timing system to support long-pulse operation and high-speed data acquisition

2012 
Abstract Since the first campaign of KSTAR in 2008, the home-made timing system had run for the synchronized operation of tokamak. The timing board which featured PMC-form factor, giga-bit optical communication, home-made protocol, multi-triggering capability, using GPS time and being integrated to EPICS (Experimental Physics and Industrial Control System), had advantages of compactness, modularity, platform independency and full functionality for the synchronized tokamak operation. However, there was deficiency in timing accuracy resulting from the engagement of software in realization of timing function and timing jitter due to poor isolation in output ports. Moreover, new requirements were on the rise as the plasma pulse length was getting longer and diagnostics operating at the higher frequency were newly installed. In order to meet new requirements and overcome the problems, the new timing board has been developed. As a result, the performance is remarkably enhanced: timing accuracy less than 5 ns, jitter less than 100 ps, 8 configurable multi-triggering sections, provision of maximum 100 MHz sampling clock. The KSTAR timing system upgraded by introducing the new timing board is participating in the 2011 campaign after calibration and consolidating the established timing system. This paper describes design, development and commissioning results of the new KSTAR timing system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    8
    Citations
    NaN
    KQI
    []