language-icon Old Web
English
Sign In

KSTAR

The KSTAR (or Korea Superconducting Tokamak Advanced Research) is a magnetic fusion device at the National Fusion Research Institute in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy which will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995 but construction was delayed by the East Asian financial crisis which weakened the South Korean economy considerably; however the construction phase of the project was completed on September 14, 2007. The first plasma was achieved in June 2008. The KSTAR (or Korea Superconducting Tokamak Advanced Research) is a magnetic fusion device at the National Fusion Research Institute in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy which will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995 but construction was delayed by the East Asian financial crisis which weakened the South Korean economy considerably; however the construction phase of the project was completed on September 14, 2007. The first plasma was achieved in June 2008. KSTAR will be one of the first research tokamaks in the world to feature fully superconducting magnets, which again will be of great relevance to ITER as this will also use SC magnets. The KSTAR magnet system consists of 16 niobium-tin direct current toroidal field magnets, 10 niobium-tin alternating current poloidal field magnets and 4 niobium-titanium alternating current poloidal field magnets. It is planned that the reactor will study plasma pulses of up to 20 seconds duration until 2011, when it will be upgraded to study pulses of up to 300 seconds duration. The reactor vessel will have a major radius of 1.8 m, a minor radius of 0.5 m, a maximum toroidal field of 3.5 Tesla, and a maximum plasma current of 2 megaampere. As with other tokamaks, heating and current drive will be initiated using neutral beam injection, ion cyclotron resonance heating (ICRH), radio frequency heating and electron cyclotron resonance heating (ECRH). Initial heating power will be 8 megawatt from neutral beam injection upgradeable to 24 MW, 6 MW from ICRH upgradeable to 12 MW, and at present undetermined heating power from ECRH and RF heating. The experiment will use both hydrogen and deuterium fuels but not the deuterium-tritium mix which will be studied in ITER. In December 2016, KSTAR set a world record (longest high-confinement mode) by confining and maintaining a high-temperature hydrogen plasma (about 50 million degrees Celsius) for 70 seconds. The record was broken by China's Experimental Advanced Superconducting Tokamak (EAST) (101.2 seconds) in July 2017. The design was based on Tokamak Physics Experiment which was based on Compact Ignition Tokamak design - See Robert J. Goldston.

[ "Tokamak" ]
Parent Topic
Child Topic
    No Parent Topic