Quantification of Interface-Dependent Plasmon Quality Factors Using Single-Beam Nonlinear Optical Interferometry

2018 
A method for quantification of plasmon mode quality factors using a novel collinear single-beam interferometric nonlinear optical (INLO) microscope is described. A collinear sequence of phase-stabilized femtosecond laser pulses generated by a series of birefringent optics is used for the INLO experiments. Our experimental designs allow for the creation of pulse replicas (800 nm carrier wave) that exhibit interpulse phase stability of 33 mrad (approximately 14 attoseonds), which can be incrementally temporally delayed from attosecond to picosecond time scales. This temporal tuning range allows for resonant electronic Fourier spectroscopy of plasmonic gold nanoparticles. The collinear geometry of the pulse pair facilitates integration into an optical microscopy platform capable of single-nanoparticle sensitivity. Analysis of the Fourier spectra in the frequency domain yields the sample plasmon resonant response and homogeneous line width; the latter provided quantification of the plasmon mode quality factor...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []