Design of Natural Killer T Cell Activators: Structure And Function of a Microbial Glycosphingolipid Bound to Mouse Cd1d

2006 
Abstract Natural killer T (NKT) cells provide an innate-type immune response upon T cell receptor interaction with CD1d-presented antigens. We demonstrate through equilibrium tetramer binding and antigen presentation assays with Vα14i-positive NKT cell hybridomas that the Sphingomonas glycolipid α-galacturonosyl ceramide (GalA-GSL) is a NKT cell agonist that is significantly weaker than α-galactosylceramide (α-GalCer), the most potent known NKT agonist. For GalA-GSL, a shorter fatty acyl chain, an absence of the 4-OH on the sphingosine tail and a 6′-COOH group on the galactose moiety account for its observed antigenic potency. We further determined the crystal structure of mCD1d in complex with GalA-GSL at 1.8-A resolution. The overall binding mode of GalA-GSL to mCD1d is similar to that of the short-chain α-GalCer ligand PBS-25, but its sphinganine chain is more deeply inserted into the F′ pocket due to alternate hydrogen-bonding interactions between the sphinganine 3-OH with Asp-80. Subsequently, a slight lateral shift (>1 A) of the galacturonosyl head group is noted at the CD1 surface compared with the galactose of α-GalCer. Because the relatively short C14 fatty acid of GalA-GSL does not fully occupy the A′ pocket, a spacer lipid is found that stabilizes this pocket. The lipid spacer was identified by GC/MS as a mixture of saturated and monounsaturated palmitic acid (C16). Comparison of available crystal structures of α-anomeric glycosphingolipids now sheds light on the structural basis of their differential antigenic potency and has led to the design and synthesis of NKT cell agonists with enhanced cell-based stimulatory activities compared with α-GalCer. adjuvant glycolipid
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    129
    Citations
    NaN
    KQI
    []