RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification.

2021 
Abstract Food analysis to ensure food safety and quality are relevant to all countries. This study aimed to develop a detection technique by combining recombinase polymerase amplification with CRISPR-Cas12a for food safety (termed RPA-Cas12a-FS). Our data showed that this novel method could be detected via fluorescence intensity for the molecular identification of foodborne pathogenic bacteria, genetically modified crops, and meat adulteration. After optimization, the sensitivity and stability of RPA-Cas12a-FS was further enhanced. The RPA-Cas12a-FS system could specifically detect target gene levels as low as 10 copies in 45 minutes at 37 °C. The RPA-Cas12a-FS system was sensitive both using standard samples in the lab and using samples from the field, which indicated that this detection method was practical. In conclusion, a simple, rapid, and highly sensitive detection method based on CRISPR-Cas12a was developed for molecular identification in the food safety field without requiring technical expertise or ancillary equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    13
    Citations
    NaN
    KQI
    []