Effect of stearic acid on rheological properties and printability of ethylene vinyl acetate based feedstocks for fused filament fabrication of alumina

2020 
Abstract Alumina ceramic feedstocks with ethylene vinyl acetate and stearic acid as an organic binder were prepared and shaped by a commercial 3D filament printer. Rheological properties and the ability of ceramic feedstocks to be processed into filaments and shaped by the fused deposition modeling/filament (FDM/FFF) technique were investigated. The addition of stearic acid affects the viscosity as a function of shear rate in a complex way. Analysis with rheological models shows that while using a small amount of stearic acid, a viscosity plateau at low shear rate (cross model) can be observed. At high stearic acid content, a yield point (Herschel-Bulkley model) occurs, as the stearic acid content surpasses the amount needed to cover the powder surface. The stearic acid also influences the properties of the solidified filament, making it more brittle and less flexible. Thin wall structures were printed, debinded and sintered to demonstrate the shape stability and fusion between the layers. Ring-on-ring bending tests of sintered discs show that the printing defects are the primary concerns that determine the strength of sintered samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    11
    Citations
    NaN
    KQI
    []