language-icon Old Web
English
Sign In

Fused filament fabrication

Fused filament fabrication (FFF), also known under the trademarked term fused deposition modeling (FDM), sometimes also called filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large coil through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. 'Fused filament fabrication' was coined by the members of the RepRap project to give a phrase that would be legally unconstrained in its use, given trademarks covering 'fused deposition modeling'. Fused filament fabrication (FFF), also known under the trademarked term fused deposition modeling (FDM), sometimes also called filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large coil through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. 'Fused filament fabrication' was coined by the members of the RepRap project to give a phrase that would be legally unconstrained in its use, given trademarks covering 'fused deposition modeling'. Fused filament printing is now the most popular process (by number of machines) for hobbyist-grade 3D printing. Other techniques such as photopolymerisation and powder sintering may offer better results, but they are much more costly. The 3D printer head or 3D printer extruder is a part in material extrusion additive manufacturing responsible for raw material melting and forming it into a continuous profile. A wide variety of filament materials are extruded, including thermoplastics such as acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), high-impact polystyrene (HIPS), thermoplastic polyurethane (TPU) and aliphatic polyamides (nylon). Fused deposition modeling was developed by S. Scott Crump, co-founder of Stratasys, in 1988. With the 2009 expiration of the patent on this technology, people could use this type of printing without paying Stratasys for the right to do so, opening up commercial, DIY, and open-source (RepRap) 3D printer applications. This has led to a two-orders-of-magnitude price drop since this technology's creation. Stratasys still owns the trademark on the term 'Fused deposition modeling'. 3D printing, also referred to as Additive manufacturing (AM), involves manufacturing a part by depositing material layer by layer. There is a wide array of different AM technologies that can do this, including material extrusion, binder jetting, material jetting and directed energy deposition. These process have varied types of extruders and extrude different materials to achieve the final product. Fused filament fabrication uses material extrusion to print items, where a feedstock material is pushed through an extruder. In most fused filament fabrication 3D printing machines, the feedstock material comes in the form of a filament wound onto a spool. The 3D printer liquefier is the component predominantly used in this type of printing. Extruders for these printers have a cold end and a hot end. The cold end pulls material from the spool, using gear- or roller-based torque to the material and controlling the feed rate by means of a stepper motor. The cold end pushes feedstock into the hot end. The hot end consists of a heating chamber and a nozzle. The heating chamber hosts the liquefier, which melts the feedstock to transform it into a thin liquid. It allows the molten material to exit from the small nozzle to form a thin, tacky bead of plastic that will adhere to the material it is laid on. The nozzle will usually have a diameter of between 0.3 mm and 1.0 mm. Different types of nozzles and heating methods are used depending upon the material to be printed. FFF begins with a software process which processes an STL file (STereoLithography file format), mathematically slicing and orienting the model for the build process. If required, support structures may be generated. The nozzle can be moved in both horizontal and vertical directions, and is mounted to a mechanical stage, which can be moved in the xy plane.

[ "Polymer", "3D printing", "Extrusion", "FFF system" ]
Parent Topic
Child Topic
    No Parent Topic