Exploring the potential of novel xanthine oxidase inhibitory peptide (ACECD) derived from Skipjack tuna hydrolysates using affinity-ultrafiltration coupled with HPLC–MALDI-TOF/TOF-MS

2021 
Abstract This study aimed to isolate and investigate the potential of the peptide alanine-cysteine-glutamic acid-cysteine-aspartic acid (ACECD), a novel xanthine oxidase inhibitory (XODI) peptide derived from Skipjack tuna hydrolysate (HS). Ultrafiltration membranes were used to obtain HS-based peptides as successive ultrafiltration fractions (of decreasing molecular weight) of UF-1, UF-2, UF-3, and UF-4. Their antioxidant and xanthine oxidase (XOD) inhibitory activities were determined and further characterized by affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS and in silico techniques. The results showed that peptides with a molecular weight (MW) cutoff of 600–1000 Da (UF-2) exhibited the highest antioxidant and XODI activities. A novel XODI peptide (ACECD) was identified with an IC50 value of 13.40 mmol/L, which decreased by 21.24% and 51.40% compared to those of UF-2 and HS, respectively. Molecular docking indicated that ACECD inserted into the active center of Mo atoms in XOD, which led to competitive attachment with XOD and caused inhibition. The study findings indicated that the ACECD peptide could be useful as a safe XODI substance to alleviate hyperuricemia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []