Transcriptional regulation of sphingolipid metabolism in budding yeast

2021 
Global control for the synthesis of lipids constituting a bilayer of cell membranes is known to be with a small number of transcription factors called master transcriptional regulators, which target a wide range of genes encoding lipid metabolism enzymes and/or their regulators. Although master transcriptional regulators of glycerophospholipids and sterols have been identified in both yeast and mammals, this aspect of sphingolipid metabolism is not yet understood. In the present study, we identified the C2H2-type zinc finger transcription factor, Com2, as a master transcriptional regulator of sphingolipid metabolism in the budding yeast, Saccharomyces cerevisiae. The target of rapamycin complex 2 (TORC2)-activated protein kinase Ypk1 is known to regulate sphingolipid metabolism. Activated Ypk1 stimulates the activity of serine palmitoyl transferase (SPT), the first-step enzyme in sphingolipid biosynthesis, by phosphorylating and inhibiting Orm1/2, a negative regulator of SPT. This regulation of SPT activity is thought to be a major pathway in the regulation of sphingolipid metabolism. In the present study, we found that inhibition of sphingolipid synthesis upregulates the expression of Com2, which in turn leads to the concomitant expression of Ypk1. The upregulation of Ypk1 expression was found to be dependent on a putative Com2-binding site in the YPK1 promoter. Our results also suggested that Com2 senses intracellular sphingolipid levels through a pathway independent of TORC2-Ypk1-mediated sensing of sphingolipids. Our results revealed an additional layer of mechanistic regulation that allows cells to maintain appropriate levels of sphingolipid biosynthesis and to rapidly induce this process in response to environmental stresses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []