A Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition

2020 
To date, various Prussian blue analogues (PBA) have been prepared for biomedical applications due to their unique structural advantages. However, the safety and effectiveness of tumor treatment still need further exploration. This contribution reports a facile synthesis of novel PBA with superior tumor synergetic therapy effects and a detailed mechanistic evaluation of their intrinsic tumor metastasis inhibition activity. The as-synthesized PBA have a uniform cube structure with a diameter of approximately 220 nm and showed high near infrared light (NIR) photoreactivity, photothermal conversion efficiency (41.44%) and photodynamic effect. Additionally, PBA could lead to chemodynamic effect which caused by Fenton reaction and ferroptosis. The combined therapy strategy of PBA exhibit notable tumor ablation properties due to photothermal (PTT)/photodynamic therapy (PDT)/ chemodynamic therapy (CDT) effect without obvious toxicity in vivo . The PBA also demonstrate potential as a contrast agent for magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. More importantly, careful investigations reveal that PBA displays excellent biodegradation and anti-metastasis properties. Further exploration of this PBA implies that its underlying mechanism of intrinsic tumor metastasis inhibition activity can be attributed to modulation of epithelial mesenchymal transition (EMT) expression. The considerable potential exhibits by as-synthesized PBA make it an ideal candidate as a synergetic therapeutic agent for tumor treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []