BMP4 and perivascular cells promote hematopoietic differentiation of human pluripotent stem cells in a differentiation stage-specific manner

2020 
The efficient and reproducible derivation and maturation of multipotent hematopoietic progenitors from human pluripotent stem cells (hPSCs) requires the recapitulation of appropriate developmental stages and the microenvironment. Here, using serum-, xeno-, and feeder-free stepwise hematopoietic induction protocols, we showed that short-term and high-concentration treatment of hPSCs with bone morphogenetic protein 4 (BMP4) strongly promoted early mesoderm induction followed by increased hematopoietic commitment. This method reduced variations in hematopoietic differentiation among hPSC lines maintained under chemically defined Essential 8 medium compared to those maintained under less-defined mTeSR medium. We also found that perivascular niche cells (PVCs) significantly augmented the production of hematopoietic cells via paracrine signaling mechanisms only when they were present during the hematopoietic commitment phase. A protein array revealed 86 differentially expressed (>1.5-fold) secretion factors in PVC-conditioned medium compared with serum-free control medium, of which the transforming growth factor-β inducible gene H3 significantly increased the number of hematopoietic colony-forming colonies. Our data suggest that BMP4 and PVCs promote the hematopoietic differentiation of hPSCs in a differentiation stage-specific manner. This will increase our understanding of hematopoietic development and expedite the development of hPSC-derived blood products for therapeutic use. Adding a vital regulatory molecule and support cells to the culture medium can help in the derivation of blood products from stem cells. A team led by Seok-Ho Hong from Kangwon National University in Chuncheon, South Korea, followed a clinical-grade protocol for converting embryonic stem cells or induced pluripotent stem cells from adults into blood cell precursors. The researchers showed that incorporating high doses of a growth factor called bone morphogenetic protein 4 into the standard culture medium for a short period promoted early differentiation toward blood cells. Incorporating so-called perivascular cells taken from umbilical cord blood also enhanced the process through the secretion of signaling molecules that further pushed the stem cells toward differentiating into blood cells. The findings could help improve protocols for making blood products from stem cells for therapeutic purposes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []