Nuclear microbeam analysis of ICF target material made by GDP technique

2015 
Germanium doped carbon-hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis, The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 mu m thickness and ICF target with 500-2000 mu m diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality. (C) 2014 Elsevier B.V. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    6
    Citations
    NaN
    KQI
    []