A microbeam is a narrow beam of radiation, of micrometer or sub-micrometer dimensions. Together with integrated imaging techniques, microbeams allow precisely defined quantities of damage to be introduced at precisely defined locations. Thus, the microbeam is a tool for investigators to study intra- and inter-cellular mechanisms of damage signal transduction. A microbeam is a narrow beam of radiation, of micrometer or sub-micrometer dimensions. Together with integrated imaging techniques, microbeams allow precisely defined quantities of damage to be introduced at precisely defined locations. Thus, the microbeam is a tool for investigators to study intra- and inter-cellular mechanisms of damage signal transduction. A schematic of microbeam operation is shown on the right. Essentially, an automated imaging system locates user-specified targets, and these targets are sequentially irradiated, one by one, with a highly-focused radiation beam. Targets can be single cells, sub-cellular locations, or precise locations in 3D tissues. Key features of a microbeam are throughput, precision, and accuracy. While irradiating targeted regions, the system must guarantee that adjacent locations receive no energy deposition. The first microbeam facilities were developed in the mid-90s. These facilities were a response to challenges in studying radiobiological processes using broadbeam exposures. Microbeams were originally designed to address two main issues: