Influence of Transonic Flutter on the Conceptual Design of Next-Generation Transport Aircraft

2018 
Transonic aeroelasticity is an important consideration in the conceptual design of next-generation aircraft configurations. This paper develops a low-order physics-based flutter model for swept high-aspect-ratio wings. The approach builds upon a previously developed flutter model that uses the flowfield’s lowest moments of vorticity and volume-source density perturbations as its states. The contribution of this paper is a new formulation of the model for swept high-aspect-ratio wings. The aerodynamic model is calibrated using offline two-dimensional unsteady transonic computational-fluid-dynamics simulations. Combining that aerodynamic model with a beam model results in a low-dimensional overall aeroelastic system. The low computational cost of the model permits its incorporation in a conceptual design tool for next-generation transport aircraft. The model’s capabilities are demonstrated by finding transonic flutter boundaries for different clamped-wing configurations and investigating the influence of tr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    13
    Citations
    NaN
    KQI
    []