Nonlinear Aerodynamic and Aeroelastic Model Reduction using a Discrete Empirical Interpolation Method

2017 
A novel surrogate model is proposed in lieu of computational-fluid-dynamics solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by a discrete empirical interpolation method. The flowfield is then reconstructed using a least-square approximation of the flow modes extracted by proper orthogonal decomposition. The aeroelastic reduced-order model is completed by introducing a nonlinear mapping function between displacements and the discrete empirical interpolation method points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using a NACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock waves triggers the appearance of limit-cycle oscillations, which the model is able to predict. For all ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    16
    Citations
    NaN
    KQI
    []