Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells.

2014 
3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as ‘mesogel’. An optimized protocol was developed that resulted in efficient decellularization while providing the maximum yield of ECM. The proteins were sequentially solubilized using acetic acid, Sodium Dodecyl Sulfate (SDS) and Dithiothreitol (DTT). These proteins were then analyzed using surfactant-assisted in-solution digestion followed by nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). The results of these analyses revealed significant differences in their respective compositions and 17 significant ECM/matricellular proteins were differentially identified between cardiogel and mesogel. We observed that cardiogel also promoted cell proliferation, adhesion and migration while enhancing cardiomyogenic differentiation and angiogenesis. In conclusion, we developed a reproducible method for efficient extraction and solubilization of in vitro cultured cell-derived extracellular matrix. We report several important proteins differentially identified between cardiogel and mesogel, which can explain the biological properties of cardiogel. We also demonstrated the cardiomyogenic differentiation and angiogenic potential of cardiogel even in the absence of any external growth factors. The transplantation of Bone Marrow derived Stromal/Stem Cells (BMSCs) cultured on such a nanomatrix has potential applications in regenerative therapy for Myocardial Infarction (MI).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    24
    Citations
    NaN
    KQI
    []