Synthesis and electrochemical properties of rGO-MoS 2 heterostructures for highly sensitive nitrite detection

2018 
In this paper, the reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) (rGO-MoS2) heterostructures have been successfully synthesized by a facile hydrothermal method. The crystal phase, surface morphology, and chemical composition of the obtained heterostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical properties of the nitrite sensor attached with rGO-MoS2 heterostructures were investigated using cyclic voltammetry (CV) and single-potential amperometry methods. The measured results show that the as-prepared sensor based on rGO-MoS2/GCE exhibits a wide linear measurement range (0.2–4800 μM), low detection limit (0.17 μM), high sensitivity (0.46 μA μM−1 cm−2), and good selectivity and reproducibility towards nitrite detection. The anti-interference property and real sample analysis were also investigated, which shows that the as-prepared rGO-MoS2 heterostructures present great potential for practical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    23
    Citations
    NaN
    KQI
    []