Analysis and implementation of low-power perceptual multiband noise reduction for the hearing aids application

2014 
Traditional noise reduction designs provide good performance but suffer from high complexity and long latency, which limits their application to hearing aids. Targeted for strict low-power and low-latency requirement of completely-in-the-canal type hearing aids, this study analyses and implements a previously proposed sample-based perceptual multiband spectral subtraction with a multiplication-based entropy voice activity detection. Simulation results reveal that the authors design can provide similar speech quality as others, but with lower computational complexity and simple control effort. The corresponding core-based architecture design further exploits processing characteristics of the proposed approach to reduce power consumption with a sign-magnitude and a preprocessed input data reuse scheme. Chip measurement shows that the design only consumes 83.7 µW at 0.6 V operation with 90 nm high threshold voltage (HVT) (high VT ) standard cell library.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    6
    Citations
    NaN
    KQI
    []