Prozessentwicklung für das Mikro-Pulverspritzgießen von Wolfram
2007
For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a high hardness comparable to recrystalized material as well as a tensile strength of 290 N/ mm 2 and an elongation of break at 35 %. Nevertheless, by conventional sintering extensive grain growth up to 68 μm was observed for samples with a sintered density of 99% theoretical density. To avoid extensive grain growth a HIP-process was developed for injection moulded tungsten samples, achieving a grain size of 5,5 μm. In addition to tungsten, a wide range of tungsten alloys are of industrial interest for e.g. electrodes, thermal shielding, microelectronics and automotive applications. Accordingly the process developments for micro injection moulding has successfully been extended to oxide disperse strengthened tungsten and tungsten heavy alloys.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI