CD4 and CD7 molecules as targets for drug delivery from antibody bearing liposomes

1991 
Abstract We have examined two T lymphocyte cell surface molecules, CD4 and CD7, as targets for specific delivery of drugs from antibody-directed liposomes. The efficiency of uptake by peripheral lymphocytes, thymocytes, and two CEM sublines (CEM.MRS and CEM-T4) of anti-CD4 and anti-CD7 liposomes containing methotrexate was evaluated by the methotrexate-mediated inhibition of the incorporation of d -[ 3 H]Urd into DNA. This was compared with similar liposomes targeted to MHC-encoded HLA class I molecules, which are known to be efficiently taken up by T cells. Despite the lower expression of CD7 molecules relative to HLA class I on most cell lines, CD7 was shown to be a good target for drug delivery. The results of an internalization study using radiolabeled Protein A showed that a higher proportion of CD7 molecules was internalized than HLA class I molecules. CD4-targeted liposomes, in contrast, were relatively ineffective for drug delivery for lymphoid cells, and only partially inhibited CEM-T4 cells. The lack of toxicity correlated with poor internalization of the target molecule on most cell lines. The drug effect of anti-CD4 liposomes was more pronounced on HeLa-T4, which is an epithelial cell line transfected with the CD4 gene. In contrast to lymphoid cells, these cells efficiently internalized CD4 molecules. PMA is known to down-regulate surface expression of CD4 molecules on various T cells. Internalization of CD4 was induced by PMA, but PMA failed to induce cytotoxicity of CD4-targeted liposomes for CEM.MRS. The internalized drug was probably degraded rapidly because internalized anti-CD4 antibody-bound Protein A was degraded very rapidly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    32
    Citations
    NaN
    KQI
    []