language-icon Old Web
English
Sign In

Protein A

Protein A is a 42 kDa surface protein originally found in the cell wall of the bacteria Staphylococcus aureus. It is encoded by the spa gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two-component system called ArlS-ArlR. It has found use in biochemical research because of its ability to bind immunoglobulins. It is composed of five homologous Ig-binding domains that fold into a three-helix bundle. Each domain is able to bind proteins from many mammalian species, most notably IgGs. It binds the heavy chain within the Fc region of most immunoglobulins and also within the Fab region in the case of the human VH3 family. Through these interactions in serum, where IgG molecules are bound in the wrong orientation (in relation to normal antibody function), the bacteria disrupts opsonization and phagocytosis. Protein A is a 42 kDa surface protein originally found in the cell wall of the bacteria Staphylococcus aureus. It is encoded by the spa gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two-component system called ArlS-ArlR. It has found use in biochemical research because of its ability to bind immunoglobulins. It is composed of five homologous Ig-binding domains that fold into a three-helix bundle. Each domain is able to bind proteins from many mammalian species, most notably IgGs. It binds the heavy chain within the Fc region of most immunoglobulins and also within the Fab region in the case of the human VH3 family. Through these interactions in serum, where IgG molecules are bound in the wrong orientation (in relation to normal antibody function), the bacteria disrupts opsonization and phagocytosis. As a by-product of his work on type-specific staphylococcus antigens, Verwey reported in 1940 that a protein fraction prepared from extracts of these bacteria non-specifically precipitated rabbit antisera raised against different staphylococcus types. In 1958, Jensen confirmed Verwey’s finding and showed that rabbit pre-immunization sera as well as normal human sera bound to the active component in the staphylococcus extract; he designated this component Antigen A (because it was found in fraction A of the extract) but thought it was a polysaccharide. The misclassification of the protein was the result of faulty tests but it was not long thereafter (1962) that Löfkvist and Sjöquist corrected the error and confirmed that Antigen A was in fact a surface protein on the bacterial wall of certain strains of S. aureus. The Bergen group from Norway named the protein 'Protein A' after the antigen fraction isolated by Jensen. It has been shown via crystallographic refinement that the primary binding site for protein A is on the Fc region, between the CH2 and CH3 domains. In addition, protein A has been shown to bind human IgG molecules containing IgG F(ab')2 fragments from the human VH3 gene family. Protein A can bind with strong affinity to the Fc portion of immunoglobulin of certain species as shown in the below table. In addition to protein A, other immunoglobulin-binding bacterial proteins such as Protein G, Protein A/G and Protein L are all commonly used to purify, immobilize or detect immunoglobulins. As a pathogen, Staphylococcus aureus utilizes protein A, along with a host of other proteins and surface factors, to aid its survival and virulence. To this end, protein A plays a multifaceted role: Protein A helps inhibit phagocytic engulfment and acts as an immunological disguise. Higher levels of protein A in different strains of S. aureus have been associated with nasal carriage of this bacteria. Mutants of S. aureus lacking protein A are more efficiently phagocytosed in vitro, and mutants in infection models have diminished virulence. Protein A is produced and purified in industrial fermentation for use in immunology, biological research and industrial applications (see below). Natural (or native) protein A can be cultured in Staphylococcus aureus and contains the five homologous antibody binding regions described above and a C-terminal region for cell wall attachment. Today, protein A is more commonly produced recombinantly in Escherichia coli. (Brevibacillus has also been shown to be an effective host.) Recombinant versions of protein A also contain the five homologous antibody binding domains but may vary in other parts of the structure in order to facilitate coupling to porous substrates Engineered versions of the protein are also available, the first of which was rProtein A, B4, C-CYS. Engineered versions are multimers (typically tetramers, pentamers or hexamers) of a single domain which has been modified to improve usability in industrial applications.

[ "Antibody", "Protein A-sepharose", "Staphylococcus aureus protein A", "S. aureus protein A", "staphylococcal protein", "Immunoglobulin Hinge Region" ]
Parent Topic
Child Topic
    No Parent Topic