Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment
2007
The enhancement of photoluminescence emission from silicon quantum dots in the near field of cylindrical silver particles has been calculated using finite integration techniques. This computational method permitted a quantitative examination of the plasmon resonance frequencies and locally enhanced fields surrounding coupled arrays of silver particles having arbitrary shapes and finite sizes. We have studied Ag nanoparticles with diameters in the 50−300 nanometer range and array pitches in the range of 50−800 nm, near a plane of optical emitters spaced 10−40 nm from the arrays. The calculated and experimental plasmon resonance frequencies and luminescence enhancements are in good agreement. In the tens-of-nanometers size regime, for the geometries under investigation, two competing factors affect the photoluminescence enhancement; on one hand, larger field enhancements, which produce greater emission enhancements, exist around smaller silver particles. However, as the spacing of such particles is decrease...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
90
Citations
NaN
KQI